
Journal of Magnetic Resonance 170 (2004) 67–78

www.elsevier.com/locate/jmr
ODIN—Object-oriented Development Interface for NMR

Thies H. Jochimsen* and Michael von Mengershausen

Max-Planck-Institute of Cognitive Neuroscience, Stephanstr. 1a, D 04103 Leipzig, Germany

Received 4 December 2003; revised 4 May 2004

Available online 6 July 2004
Abstract

A cross-platform development environment for nuclear magnetic resonance (NMR) experiments is presented. It allows rapid

prototyping of new pulse sequences and provides a common programming interface for different system types. With this object-

oriented interface implemented in C++, the programmer is capable of writing applications to control an experiment that can be

executed on different measurement devices, even from different manufacturers, without the need to modify the source code. Due to

the clear design of the software, new pulse sequences can be created, tested, and executed within a short time. To post-process the

acquired data, an interface to well-known numerical libraries is part of the framework. This allows a transparent integration of the

data processing instructions into the measurement module. The software focuses mainly on NMR imaging, but can also be used

with limitations for spectroscopic experiments. To demonstrate the capabilities of the framework, results of the same experiment,

carried out on two NMR imaging systems from different manufacturers are shown and compared with the results of a simulation.

� 2004 Elsevier Inc. All rights reserved.

PACS: 87.59.Pw

Keywords: NMR; Software; Sequence programming; Platform-independent; Pulse design
1. Introduction

Nuclear magnetic resonance (NMR) is a versatile tool

to investigate physical properties of materials and living

tissue. The flexibility of the NMR technique can be at-
tributed to the fact that a wide range of experiments is

designed by solely altering the software that controls the

hardware during the measurement. With a given set of

hardware components, various properties of the sample

can be examined with different software-based experi-

mental setups (i.e., pulse sequences). An important task

of the NMR scientist who develops new NMR applica-

tions is therefore that of a software engineer. Provided a
sophisticated programming interface for sequence design

is available, advances in the field of computer science can

accelerate the process of creating NMR applications.

Contemporary concepts like object-oriented design,

polymorphism, and generic programming are used

nowadays in software engineering to create modular,
* Corresponding author. Fax: +49-341-99-40-221.

E-mail address: thies@jochimsen.de (T.H. Jochimsen).

1090-7807/$ - see front matter � 2004 Elsevier Inc. All rights reserved.

doi:10.1016/j.jmr.2004.05.021
extensible, and easy-to-use software instead of proce-

dural programming (an excellent overview of these

programming paradigms and their implementation in

C++ can be found in [1]). By contrast, NMR pulse se-

quences are usually programmed using the procedural
approach. That is, the scientist provides a program that

contains a list of sequential instructions to trigger

hardware-events together with some calculations to

achieve the required properties of the sequence (e.g.,

resolution, orientation, and contrast). This results in a

non-modular, monolithic implementation of the se-

quence which seriously limits the reuse of certain parts

in another sequence, except for duplicating the source
code. A modern approach would describe the sequence

as a composition of reusable, self-consistent objects that

can be combined freely to develop new experimental

setups.

Recently, a software architecture has been presented

[2] which makes use of this approach by a double-lay-

ered design whereby the user interacts with an applica-

tion framework written in Java [3] which is mapped to
corresponding C++ functionality on the hardware

mail to: thies@jochimsen.de


68 T.H. Jochimsen, M. von Mengershausen / Journal of Magnetic Resonance 170 (2004) 67–78
controller and signal processing computer. The pro-
gramming interface is provided not only for sequence

programming but also for developing work flows which

incorporate different measurement techniques for clini-

cal application. However, this framework is limited to

the devices of one manufacturer and its double-layered

design may impose a considerable overhead when add-

ing new functionality, for example custom real-time

feedback.
In contrast, ODIN, which is subsequently introduced,

concentrates on platform-independent sequence design,

and data processing with a single open-source code basis

in C++. The hardware-dependent components that

drive the different scanners are encapsulated into low-

level objects (pulses, gradients, and data-acquisition)

from which complex, platform-independent parts of the

sequence are constructed. The same source code is used
at all stages of sequence development, from simulation

on a stand-alone platform to play-out on a real-time

system. ODIN uses the native functionality of the

graphical user interface on each platform, allowing a

seamless integration of ODIN sequences. Although

ODIN is a relatively young software project, its se-

quence programming interface has been shown advan-

tageous in developing sophisticated functional magnetic
resonance imaging (fMRI) applications [4–6], in simu-

lations [7], and in the application of its module for pulse

design [8].

In this paper, the first section gives an introduction

into the ODIN sequence programming interface and its

underlying concepts. The design of radio frequency (RF)

pulses will be described in more detail as this is one of

the major strengths of ODIN. The next two sections
contain additional information about the internal rep-

resentation of the sequence within the ODIN library and

the mechanisms that are used to execute the experiment

in different hardware environments. After that, strate-

gies to visualize and simulate the sequence are presented,

and the data processing framework of ODIN is dis-

cussed. Finally, experimental results obtained with

ODIN on different platforms are shown and compared
with the results of a simulation.
2. Platform-independent sequence design

An NMR experiment is basically a sequence of pe-

riods where the sample is exposed to different magnetic

field configurations, such as RF pulses and magnetic
field gradients, or periods where data are acquired.

From these basic sequence elements, complex experi-

ments can be composed which measure spectroscopic

properties, relaxation, and transportation processes of

the spins within the sample. Magnetic field gradients

extend these experiments to spatially resolved data sets,

i.e., images of these parameters. In addition, repetitive
measurements yield time series of physiological pro-
cesses within living tissue, for example, neuronal activity

in the human brain.

The NMR sequence can be described in terms of the

physical properties of their elements and the arrange-

ment of these sequence elements as a function of time. A

simple NMR sequence is shown in Fig. 1. This level of

description is independent of the measurement device.

ODIN provides a programming interface in terms of a
C++ class hierarchy which reflects the physical aspects

of a sequence. A sequence program which is written

using this framework can be executed on different NMR

hardware. The system-specific actions are performed by

a library that transfers the sequence-specific requests to

the actual measurement hardware as depicted in Fig. 2.

The benefit of separating the physical logic of the ex-

periment from the peculiarities of the current hardware
is the portability of the sequence program. It can be

reused with other hardware, even from another manu-

facturer.

2.1. Sequence programming interface

In the following, the term basic sequence objects refers

to elements of the sequence that cannot be divided into
smaller elements from the physical point of view. Ex-

amples of such ‘‘sequence atoms’’ are periods of RF

irradiation, the application of temporary field gradients

or intervals of data acquisition. Each basic sequence

object is represented by a C++ class which handles its

physical properties, for example the duration. These

objects are constructed during the initialization of the

sequence according to the instructions given by the se-
quence programmer. From this collection, the sequence

is constructed by grouping the sequence objects into

container objects. To simplify the notion of composing

new container objects, the operators + and / are over-

loaded, i.e., they are redefined with sequence objects as

operands, and can be used to specify whether two se-

quence objects a and b should be played out sequentially

(a+b) or in parallel (a/b). As an example, the source
code for the simple sequence visualized in Fig. 1 is

printed in Fig. 3.

Besides this technique of building sequences from

scratch by grouping basic sequence objects together, the

ODIN library offers many predefined high-level se-

quence objects as C++ classes. For example, the object

acq in Figs. 1 and 3 is an acquisition window with the

simultaneous application of a gradient field that is used
in many imaging sequences for spatial frequency en-

coding. These more complex objects are constructed

from basic sequence objects within the library, using the

same mechanism of building container objects as the

sequence programmer would. In addition, the class of

these composite objects provides an interface that

is adjusted to its high-level concept. For instance, the



Fig. 1. A simple gradient-echo sequence. The inner part contains a slice-selective RF pulse, gradients Gx, Gy, and Gz for spatial encoding, and a

period during which the signal is received. This part is repeated N times for linear stepping of the gradient strength of Gy. The sequence objects of

these elements are indicated below. The operators + and / between these objects combines them to form the sequence.

T.H. Jochimsen, M. von Mengershausen / Journal of Magnetic Resonance 170 (2004) 67–78 69
object acq has a member function that returns the point

in time of the center of the acquisition window with

proper consideration of the delayed onset due to the

ramp of the simultaneous gradient.

2.2. Pulse design

A crucial part of the sequence is the application of

RF pulses to generate a detectable signal from a limited

spatial or spectral range of spins within the sample. The

ODIN framework contains a flexible module for the

generation and simulation of RF pulses. A wide range of

pulses is supported by a plug-in style mechanism. The

desired excitation profile, gradient shape, and frequency
filter can be selected and modified separately to match

the pulse optimally to the specific application. It can be

easily extended by supplying the module with new plug-

ins which generate k-space trajectories or calculate the

RF waveform as a function of time or k-space coordi-

nate. The following pulse types are already supported by

existing plug-ins of the ODIN library:
• Slice-selective pulses (Sinc, Gauss), optionally with a

VERSE [9] trajectory for reduced power excitation.

• Adiabatic pulses (Sech [10], WURST [11]).

• Spectrally and spatially selective pulses [12] for slice-

selection with a predefined spectral profile (e.g., for

fat suppression).
• Two dimensional (2D) pulses [13] with various excita-

tion shapes and different spiral trajectories.

• Composite pulses [14] which are created by concate-

nating one of the above pulses with different trans-

mitter phases and flip angles.

In addition, these pulses can be filtered either in k-space
or in the time domain using a filter plug-in. The benefit

from separating the pulse shape and the trajectory into
different plug-ins can be illustrated by considering the

generation of 2D pulses: each of the excitation profiles

(point, box, disk, and user-defined list of points) can be

used in combination with any of the 2D trajectories in

order to generate a pulse profile that is well adjusted to

the requirements. For example, an excitation profile that

consists of a chain of adjacent points together with a



Fig. 2. Flowchart of an NMR experiment performed with the ODIN framework. The sequence programmer implements a C++ class that represents

the experimental method and uses the platform-independent sequence programming interface. An object of this class is then used by the ODIN

library to execute the sequence on the different platforms by means of hardware-specific instructions within the library. The acquired raw data is then

post-processed by a member function reco of the same class that was used for the measurement. Finally, the processed data (images, spectra) are

written to disk.

70 T.H. Jochimsen, M. von Mengershausen / Journal of Magnetic Resonance 170 (2004) 67–78
slew-rate optimized trajectory is useful for curved slice

imaging [15].

Because the pulse module is a regular sequence object,

it can be integrated seamlessly into any NMR sequence.

For example, the object pulse in Figs. 1 and 3 is a slice-

selective specialization of this module using the Sinc

plug-in for the pulse shape. In addition, a graphical user

interface (Fig. 4) which acts as a front-end to the pulse
module can be used for interactive pulse design and

monitoring of the corresponding excitation profile.

2.3. Loops and vectors

An essential aspect in most NMR experiments is to

repeat certain parts of the sequence unchanged or with

different settings. Examples are the repetition of a gra-
dient-echo with different strength of the phase-encoding

gradient in conventional Fourier imaging as used in the

sequence of Fig. 1, or the repetition with different pulse

frequencies for multi-slice acquisition.

To use this technique in a uniform manner, ODIN

introduces the concept of vector objects and loop objects.

Vector objects are elements of the sequence that are used

repeatedly with different settings. The following prede-
fined vector classes, derived from a common base class

Seq Vector, are available to the sequence programmer:

• Gradient pulses with different gradient strengths for

phase encoding or diffusion weighting.

• Sequence objects that drive the transmitter (RF

pulses) or receiver (acquisition windows) contain two

vector objects for frequency and phase switching to

be used for multi-slice experiments or phase cycling.



Fig. 3. The source code of a simple gradient-echo sequence, implemented as a C++ class to be used within the ODIN framework.

T.H. Jochimsen, M. von Mengershausen / Journal of Magnetic Resonance 170 (2004) 67–78 71
• Delay objects with a variable duration, which is chan-

ged for each iteration.

• A list of user-defined rotation matrices that can be at-

tached to gradient-related objects to alter their direc-

tion subsequently.
• A container object that holds a list of other sequence

objects which are played out sequentially for each

repetition.

Although this set of specialized vector classes is proba-

bly not exhaustive, the last class may be used to easily



Fig. 4. The Pulsar user interface for interactive pulse design and simulation. The panel to the left allows editing of the pulse parameters and shows the

time courses of the RF and gradient fields. The current settings show a 2D selective pulse, i.e., a pulse that restricts the excited spins in two di-

mensions. The right-hand side displays the result of a simulation with this pulse.

72 T.H. Jochimsen, M. von Mengershausen / Journal of Magnetic Resonance 170 (2004) 67–78
extend this list by storing sequence objects for each

repetition into the container. This emulates the behavior

of a built-in vector class.

To specify which parts of the sequence will be re-

peated and which vectors will be modified at each rep-

etition, loop objects play a central role in sequence

design with ODIN. They possess a function-like syntax

(functors) when used within a sequence:
loop (kernel) [vector1][vector2]. . .
With this line of source code, the loop object loop is

used to repeat the sequence part kernel while incre-

menting the properties of the vector objects vec-

tor1,vector2,. . . that are located within kernel.

Instead of using a vector object, an integer number N can

also be given as an argument to the loop, which will then

repeat the sequence part N times unchanged. By using
this common notation for all variable aspects of a se-

quence, new applications can be implemented rapidly

without dealing with the specific aspects of the hardware.

2.4. Sequence parameters

Normally, each sequence has a set of parameters

which specify the actual experiment, for example, the
sampling rate for data acquisition or the duration of the

RF pulse. The sequence parameters are edited interac-

tively within the user interface of the measurement de-
vice, and the sequence is recalculated according to the

new settings. Within ODIN, these parameters are

members of the C++ sequence class, allowing trans-

parent access to their values in the member function that

prepares the experiment. Well-known data types (integer

numbers, floating point numbers, and Boolean values)

can be used as sequence parameters. They are designed

to be used exactly like built-in types of the C++ lan-
guage, resulting in understandable source code.

Whenever possible, the native user interface of the

measurement device is used to present the set of pa-

rameters specified by the sequence programmer. There-

by, the parameter values are exchanged between the

native user interface and the ODIN library. If no native

mechanism for parameter editing exists (e.g., on a stand-

alone platform), ODIN provides its own set of widgets
using the Qt library [16] to edit the parameters interac-

tively (Fig. 5). After the measurement, the parameters

are stored on disk in JCAMP-DX format [17] together

with the raw data. In the post-processing step, the pa-

rameters and the raw data are then read from disk.
3. Internal representation of the sequence

Any NMR sequence has a nested structure, that is,

basic sequence objects can be grouped together to form



Fig. 5. User interface for rapid sequence design. It combines frequently used functionality to edit, compile, visualize, and simulate ODIN sequences.

The set of widgets for the parameters is dynamically generated according to the specifications of the sequence module. The parameter set for an EPI

sequence is shown here.

T.H. Jochimsen, M. von Mengershausen / Journal of Magnetic Resonance 170 (2004) 67–78 73
logical units, which in turn can be collected to build

more complex units. This leads to an internal repre-

sentation of the sequence as an ordered tree of sequence

objects. The leaves of this sequence tree are the basic

sequence objects (RF pulses, gradients, acquisition
windows, and evolution delays). The sequence contain-

ers are represented by nodes of the tree. They contain a

list of references to their members in the same order as

given by the sequence programmer. The nodes can

contain additional information, e.g., a loop object con-

tains the number of repetitions besides the elements of

the sequence that are repeated.

The tree is constructed during the preparation phase
of the experiment according to the instructions of the

sequence programmer. Each sequence has its special

tree. As an example, Fig. 6 depicts the sequence tree

structure for the sequence of Fig. 3. The created se-

quence tree is the central data structure that is used in

further steps of the experiment. If a certain operation

has to be performed for the sequence, e.g., calculating

the total duration of the experiment, the sequence tree is
traversed recursively, querying each object for a value
(in this case its duration), or requesting a certain oper-

ation from the object. Thereby the starting point is the

root of the sequence tree. At each node that contains an

ordered list of other sequence objects, these sub-objects

are in turn requested to perform the operation. This
recursion in each branch terminates at the leaves, if a

basic sequence object is reached. The two following

sections describe how this technique of traversing the

sequence tree is used to control the measurement device

or to visualize and simulate the sequence.

The whole sequence (i.e., the root of the tree) is in

itself a container object, represented by a C++ class,

which is implemented by the sequence programmer.
This class is derived from a base class that acts as an

interface between the sequence and the ODIN library.

By the mechanism of virtual functions in C++, a set of

sequence-specific member functions must be provided

by the sequence class that will be called during initiali-

zation, preparation, and data processing of the experi-

ment. With this technique, all sequence modules share a

common interface which can be used by the library in a
uniform manner.



Fig. 6. The sequence tree of the example sequence from Fig. 1 visualized within the ODIN framework. The first column depicts the structure of the

tree whereby the basic sequence objects can be found at the end of each branch and the container objects at the nodes, indicated by small boxes to the

left. The second and third column show the C++ type and the duration of each object. Properties that are specific to each object are shown in the last

column, e.g., the selected RF object pulse_rf has a waveform of 326 samples with the given amplitude B1.

74 T.H. Jochimsen, M. von Mengershausen / Journal of Magnetic Resonance 170 (2004) 67–78
4. Hardware-specific implementation

In this section, two examples show how the ODIN

sequence tree can be utilized to drive the hardware of

two scanners from different manufacturers:

Platform A (Bruker Medspec, 3 T) is driven by a

pulse program which is an ASCII file that contains a list

of sequential instructions for the hardware and con-

trolling structures (loops, jumps) to repeat certain parts
of the sequence. To perform an experiment, a set of

parameters must be provided that contains the detailed

settings for the measurement. The pulse program and

the parameter set cover all characteristics of the exper-

iment on this platform. ODIN maps its internal repre-

sentation of the sequence to the device by traversing the

sequence tree and generating an entry in the pulse pro-

gram for each sequence object. In addition, each se-
quence object is asked to make an entry into the

parameter set. After transferring the generated files to

the system controller, the sequence can be executed.

Because the pulse program is generated externally on the

workstation, the limited memory and speed of the sys-

tem controller is not an issue. Even better, different

variations of the pulse program, which would usually be

implemented by conditional statements in the pulse
program itself (if-then-else instructions), are handled by

ODIN. Therefore, a minimal pulse program is generated

for each experiment containing only the necessary in-

structions, thereby reducing the code size which is ac-

tually processed by the system controller.
On platform B (Siemens Trio, 3 T), the system com-
ponents are driven directly by a C++ program in real

time. The corresponding source code must be provided

by the sequence programmer. It contains instructions to

trigger hardware events (RF pulses, gradients) at speci-

fied points in time. The experiment is performed during

run-time of this program. On this platform, ODIN ex-

ecutes a sequence by traversing the sequence tree at run-

time, querying each sequence object for a corresponding
event. An internal counter takes care of the correct

starting time of each event. Although the additional le-

vel of indirection when using ODIN to trigger the

hardware events decreases execution speed a little, it was

still fast enough to execute all ODIN sequences, which

were tested so far, in real time. An additional amount of

memory is required for the ODIN library (typically

5MB) which can be easily accommodated in the free
memory (approximately 18MB) of the used system.

In the procedures described above, the connection

between the ODIN library and the current platform is

realized by a set of so-called hardware drivers, as illus-

trated in Fig. 2. These hardware drivers are implemented

by C++ classes. Each basic sequence object uses a

hardware driver to execute itself on the current plat-

form. Thereby, the hardware drivers are interchange-
able, depending on the hardware to operate. For

example, an RF pulse uses different hardware drivers on

each platform: the driver for platform A is responsible

for an entry in the pulse program and for the pulse-

specific parameter settings. The driver for platform B is



T.H. Jochimsen, M. von Mengershausen / Journal of Magnetic Resonance 170 (2004) 67–78 75
responsible for preparing and triggering hardware
events to execute the RF pulse. The internals of the

drivers are hidden behind a common interface (abstract

virtual base class in C++) so that there is little coupling

between the drivers and the rest of the library. With this

design, the code to deal with the peculiarities of each

platform is located only within a small set of C++

classes. In the case of porting ODIN to a new platform

or in the case of a software update by the manufacturer
which is accompanied by a considerable change of the

sequence programming interface, only these driver

classes have to be implemented or updated, the rest of

the library and the ODIN sequences remain unchanged.

The benefit is straightforward portability to new system

types and minimum effort in case of a software update.

Usually, the sequence programmer is responsible for

manually adding code to calculate the total duration of
the sequence or estimating the RF power deposition for

safety control in human or animal studies. With the

sequence tree in ODIN, which holds all information

about the sequence, this tedious process can be com-

pletely automated by the library which traverses the

sequence tree and queries the objects at each branch for

their properties (duration, power deposition). Thereby,

simple but error-prone programming tasks are trans-
fered to the ODIN library, allowing the sequence pro-

grammer to concentrate on the important features of the

sequence.
5. Sequence visualization and simulation

Even on computers where no NMR device is at-
tached, the ODIN framework can be useful for devel-

oping sequences. On a stand-alone platform, the time

courses of the different channels (RF, gradients, and

receiver) can be displayed, or a simulation of the se-

quence acting on a virtual sample can be performed.

This is achieved by giving all basic sequence objects the

capability to generate a digitized version of themselves,

i.e., a function that returns the values of each channel
for equally spaced points in time.

To generate a digitized version of the whole sequence

for visualization, the container objects can combine them

recursively, traversing the sequence tree until the whole

sequence is processed. The result can then be displayed

graphically. For simplicity, this is currently realized by

generating a multi-channel audio file which is then dis-

played using conventional sound editors. In addition,
predefined functions exist which calculate important as-

pects of the sequence numerically using the digitized se-

quence, for example gradient moments, the strength of

diffusion weighting or the k-space encoding of different

coherence pathways in a multi-pulse sequence.

For the simulation, a virtual sample that holds spa-

tially resolved NMR-specific properties (spin density,
relaxation rates T1 and T2, and frequency offset) is re-
quired. It can be created by means of a graphic editor or

a special ODIN sequence that measures these properties

of a real sample with a high resolution. The latter will be

used in the experimental section of this work to compare

the simulation to actual measurements. The digitized

version of each sequence object is then used to simulate

its effect on the sample. By traversing the sequence tree,

the simulation is performed in the same order as the
sequence objects would be played out on a real NMR

device. An exact solution of the Bloch equations for

piecewise constant fields [18] is utilized for the calcula-

tion: It transforms the magnetization vector at each

point of the sample recursively according to the set of

values within the digitized arrays of the sequence object.

During acquisition periods, a virtual NMR signal is

generated by integrating over the transverse component
of the magnetization vector for all points within the

virtual sample. The result of the simulation is then a

synthetic NMR signal that can be post-processed with

the same algorithm as the real signal would be pro-

cessed.

This simulation strategy is most useful for analyzing

imaging sequences. Because it is limited to ensembles of

isochromatic spins with single-quantum coherences and
interactions simplified by T1 and T2 (e.g., quadrupolar

coupling, spin–spin coupling), other tools [19–21] are

more appropriate to generate virtual spectra of samples

with different nuclei, to simulate higher-order quantum

coherences or explicit interactions. Another limitation is

given by the finite spatial size of the volume elements:

The simulation does not account for static intra-voxel

dephasing due to field inhomogeneities (T �
2 ).
6. Data processing

In a typical NMR experiment, the RF signal that is

induced by the magnetization of the sample and received

by the coil is post-processed to obtain interpretable

data. This can be a frequency analysis for spectroscopic
applications or the reconstruction of spatially resolved

parameter maps for imaging. In general, the data pro-

cessing algorithm is specific to the NMR sequence which

was used to acquire the raw data. This step is supported

by a software layer that integrates external numerical

libraries consistently into ODIN.

After the measurement, the raw data is processed by a

function of the same sequence module that was used for
the experiment. Because this function is implemented as

a C++ member function, all parameters of the mea-

surement are directly accessible. The external numerical

libraries can be used within this function. After the

processing step, the final data is written back to disk.

When dealing with large datasets, e.g., for fMRI, the

problem arises that the whole record cannot be held in



Fig. 7. MDEFT images from platform A (top) and B (bottom) with a

matrix size of 252� 252 pixels, FOV ¼ 220mm and a sweep-width of

25 kHz. This sequence type is highly sensitive to the T1 relaxation time.

Therefore it is well-suited to display anatomical structures.

76 T.H. Jochimsen, M. von Mengershausen / Journal of Magnetic Resonance 170 (2004) 67–78
memory for analysis at once. ODIN addresses this by
the use of memory paging mechanisms of the underlying

operating system (mmap/munmap functions under Li-

nux/UNIX) so that the array can be accessed transpar-

ently, even if it is too large for the main memory.

6.1. Integration of external libraries

As a basis for further integration of external libraries
into ODIN, the expression-template based multidimen-

sional array type provided by the Blitz++-library [22] is

used to hold the NMR data during the different pro-

cessing steps. Many useful functions that operate on

multidimensional arrays are already made available by

Blitz++. However, more complex numerical operations

must be added separately as they are not part of

Blitz++. Therefore, an interface to the following li-
braries has been implemented so that they always op-

erate on the array type of Blitz++ and add the described

functionality to it:

• NewMat [23]: Supports various matrix types and ma-

trix calculations.

• GSL (GNU Scientific Library) [24]: Non-linear least-

square fitting, interpolation.

• FFTW (Fastest Fourier Transform in the West) [25]:
Fourier transform for multidimensional arrays.

For example, an FFT of arrays with arbitrary dimen-

sionality can be programmed in one line of C++-code

with this integration of external libraries:

blitz_fftw(data(all,0,all));

This instruction will perform a complex in-place FFT

over the first and third dimension of the array data for

all values with index 0 in the second dimension.
7. Experiments

Two sequences were executed with the same subject

and the same settings on platform A and B. Fig. 7 shows

the reconstructed images from a power-reduced variant

of the modified driven equilibrium Fourier transform
(MDEFT) sequence [26]. Although the position of the

brain within the slice differs due to different positioning

of the subject within the magnet, both images show the

same spatial pattern and comparable contrast with a

signal-to-noise ratio of 30.5 (platform A) and 25.1

(platform B) in white matter.

In Fig. 8, spin-echo EPI [27] experiments are com-

pared with the result of a simulation which was per-
formed using high-resolution maps of the NMR

parameters (spin density, T1, T2, and frequency offset).

These maps were acquired on platform A during the

same session. The simulation was then carried out off-

line on a Linux PC to generate a synthetic signal using

the same sequence code that was used for the measure-

ments. The images are similar in terms of contrast and
image quality, but show slightly different field-of-views

in phase encoding direction which is very sensitive to

frequency offsets due to the small bandwidth. The mis-

match may therefore be caused by non-optimal com-

pensation of the field inhomogeneities (shimming) or

eddy-currents modifying the phase encoding blips. This

otherwise undesired discrepancy could be used here to
study the effects of field variations and gradient imper-

fections. However, the general similarities between the

result of the simulation and the actual experiments in-

dicate that the simulation can be used to reproduce the

measurement and that it is feasible to develop and test

sequences on a stand-alone platform.
8. Availability and licensing

The software package is published under the terms of

the GNU General Public License. It can be obtained as

source code and binary packages for different platforms

(Linux, IRIX, Windows, and VxWorks) from the web



Fig. 8. Spin-echo EPI images from platform A (top), platform B

(middle), and the simulation (bottom) with a matrix size of 64� 64,

100 accumulations, 100 kHz sweep-width and the same slices as in Fig.

7. The phase encoding direction is aligned vertically.

T.H. Jochimsen, M. von Mengershausen / Journal of Magnetic Resonance 170 (2004) 67–78 77
[28]. The online manual for the class hierarchy can also

be found at this location.
9. Conclusion

A cross-platform environment for developing NMR

sequences has been presented. The sequence program-

ming interface provides a concise C++ class hierarchy to

set up an NMR experiment within a short time. Without

changing the source code, the sequence can be visual-

ized, simulated, and executed on different NMR hard-

ware. This is particularly useful in laboratories where
more than one scanner exists, or to exchange sequences
between research facilities with different hardware in-

frastructure. With the ODIN data processing frame-

work, a consistent interface to reliable open-source

libraries for calculating the final data is provided. The

internal representation of the experiment by the se-

quence tree is adequately matched to the application

domain and allows easy extensibility when porting the

framework to new platforms.
Acknowledgments

The authors thank Robert Trampel, Markus K€orber,
and Andreas Sch€afer for improving the software and

Harald E. M€oller for helping with the manuscript.
References

[1] B. Stroustrup, The C++ Programming Language, Addison-

Wesley, Boston, 2000.

[2] J. Debbins, K. Gould, V. Halleppanavar, J. Polzin, M. Radick, G.

Sat, D. Thomas, S. Trevino, R. Haworth, Novel software

architecture for rapid development of magnetic resonance appli-

cations, Conc. Magn. Reson. (Magn. Reson. Engin.) 15 (3) (2002)

216–237.

[3] Available from <http://java.sun.com/java2/whatis>.

[4] T.H. Jochimsen, D.G. Norris, T. Mildner, H.E. M€oller,

Quantifying the intra- and extravascular contributions to

spin-echo fMRI at 3 Tesla, Magn. Reson. Med. (2004) (in

press).

[5] T.H. Jochimsen, H.E. M€oller, D.G. Norris, Is there a change in

spin density associated with fMRI?, Proc. Intl. Soc. Mag. Reson.

Med. 12 (2004) 1064.

[6] A. Sch€afer, T.H. Jochimsen, H.E. M€oller, fMRI with intermolec-

ular double-quantum coherences (iDQC) at 3T, Proc. Intl. Soc.

Mag. Reson. Med. 12 (2004) 512.

[7] R. Trampel, T.H. Jochimsen, T. Mildner, D.G. Norris, H.E.

M€oller, Efficiency of flow-driven adiabatic spin inversion under

realistic experimental conditions: a computer simulation, Magn.

Reson. Med. 51 (2004) 1187–1193.

[8] N.P. Davies, P. Jezzard, Selective arterial spin labeling (SASL):

perfusion territory mapping of selected feeding arteries tagged

using two-dimensional radiofrequency pulses, Magn. Reson. Med.

49 (2003) 1133–1142.

[9] S. Conolly, D. Nishimura, A. Macovski, G. Glover, Variable-rate

selective excitation, J. Magn. Reson. 78 (1988) 440–458.

[10] M.S. Silver, R.I. Joseph, D.I. Hoult, Highly selective p=2 and p
pulse generation, J. Magn. Reson. 59 (1984) 347–351.

[11] E. Kup�ce, R. Freeman, Adiabatic pulses for wideband inversion

and broadband decoupling, J. Magn. Reson. A 115 (1995) 273–

276.

[12] C.H. Meyer, J.M. Pauly, A. Macovski, D.G. Nishimura, Simul-

taneous spatial and spectral selective excitation, Magn. Reson.

Med. 15 (1990) 287–304.

[13] J. Pauly, D. Nishimura, A. Macovski, A k-space analysis of small-

tip-angle-excitation, J. Magn. Reson. 81 (1989) 43–56.

[14] M. Levitt, Symmetrical composite pulse sequence for NMR

population inversion. I. Compensation of radiofrequency field

inhomogeneity, J. Magn. Reson. 48 (1982) 234–264.

[15] T.H. Jochimsen, D.G. Norris, Single-shot curved slice imaging,

MAGMA 14 (2002) 50–55.

http://java.sun.com/java2/whatis


78 T.H. Jochimsen, M. von Mengershausen / Journal of Magnetic Resonance 170 (2004) 67–78
[16] Available from <http://www.trolltech.com>.

[17] A.N. Davies, P. Lampen, JCAMP-DX for NMR, Appl. Spectr-

soc. 47 (8) (1993) 1093–1099.

[18] H.C. Torrey, Transient nutation in nuclear magnetic resonance,

Phys. Rev. 76 (8) (1949) 1059–1068.

[19] S.A. Smith, T.O. Levante, B.H. Meier, R.R. Ernst, Computer

simulations in magnetic resonance. An object-oriented program-

ming approach, J. Magn. Reson. A 106 (1994) 75.

[20] P. Nicholas, D. Fushman, V. Ruchinsky, D. Cowburn, The virtual

NMR spectrometer: a computer program for efficient simulation

of NMR experiments involving pulsed field gradients, J. Magn.

Reson. 145 (2000) 262–275.

[21] W.B. Blanton, BlochLib: a fast NMR C++ tool kit, J. Magn.

Reson. 162 (2003) 269–283.
[22] T.L. Veldhuizen, Arrays in Blitz++, in: Proceedings of the Second

International Scientific Computing in Object-Oriented Parallel

Environments (ISCOPE98), Lecture Notes in Computer Science,

Springer-Verlag, 1998.

[23] R. Davies, Writing a matrix package in C++, in: The Second

Annual Object-Oriented Numerics Conference, 1994, pp. 207–213.

[24] Available from <http://www.gnu.org/software/gsl>.

[25] M. Frigo, S.G. Johnson, FFTW: An Adaptive Software Archi-

tecture for the FFT, 1998, pp. 1381–1384.

[26] D.G. Norris, Reduced power multislice MDEFT imaging, J.

Magn. Reson. Imag. 11 (4) (2000) 445–451.

[27] P. Mansfield, Multi-planar image formation using NMR spin

echoes, Solid State Phys. 10 (1977) L55–L58.

[28] Available from <http://od1n.sourceforge.net>.

http://www.trolltech.com
http://www.gnu.org/software/gsl
http://od1n.sourceforge.net

	ODIN-Object-oriented Development Interface for NMR
	Introduction
	Platform-independent sequence design
	Sequence programming interface
	Pulse design
	Loops and vectors
	Sequence parameters

	Internal representation of the sequence
	Hardware-specific implementation
	Sequence visualization and simulation
	Data processing
	Integration of external libraries

	Experiments
	Availability and licensing
	Conclusion
	Acknowledgements
	References


